direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C6×C22.D4, (C23×C4)⋊8C6, (C23×C12)⋊7C2, C24.38(C2×C6), C23.54(C3×D4), C22.61(C6×D4), (C2×C6).344C24, (C22×D4).11C6, (C22×C6).171D4, C6.183(C22×D4), C23.5(C22×C6), (C2×C12).657C23, (C22×C12)⋊59C22, (C6×D4).316C22, (C23×C6).92C22, C22.18(C23×C6), (C22×C6).259C23, C2.7(D4×C2×C6), (C6×C4⋊C4)⋊43C2, (C2×C4⋊C4)⋊16C6, C4⋊C4⋊11(C2×C6), (D4×C2×C6).23C2, C2.7(C6×C4○D4), (C3×C4⋊C4)⋊67C22, (C6×C22⋊C4)⋊30C2, (C2×C22⋊C4)⋊10C6, C22⋊C4⋊12(C2×C6), (C22×C4)⋊19(C2×C6), (C2×D4).61(C2×C6), C6.226(C2×C4○D4), (C2×C6).415(C2×D4), (C2×C4).13(C22×C6), C22.31(C3×C4○D4), (C2×C6).231(C4○D4), (C3×C22⋊C4)⋊66C22, SmallGroup(192,1413)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×C22.D4
G = < a,b,c,d,e | a6=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >
Subgroups: 530 in 342 conjugacy classes, 178 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C22×C12, C6×D4, C6×D4, C23×C6, C2×C22.D4, C6×C22⋊C4, C6×C22⋊C4, C6×C4⋊C4, C3×C22.D4, C23×C12, D4×C2×C6, C6×C22.D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C4○D4, C24, C3×D4, C22×C6, C22.D4, C22×D4, C2×C4○D4, C6×D4, C3×C4○D4, C23×C6, C2×C22.D4, C3×C22.D4, D4×C2×C6, C6×C4○D4, C6×C22.D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 83)(2 84)(3 79)(4 80)(5 81)(6 82)(7 47)(8 48)(9 43)(10 44)(11 45)(12 46)(13 51)(14 52)(15 53)(16 54)(17 49)(18 50)(19 57)(20 58)(21 59)(22 60)(23 55)(24 56)(25 90)(26 85)(27 86)(28 87)(29 88)(30 89)(31 76)(32 77)(33 78)(34 73)(35 74)(36 75)(37 70)(38 71)(39 72)(40 67)(41 68)(42 69)(61 94)(62 95)(63 96)(64 91)(65 92)(66 93)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 31)(7 92)(8 93)(9 94)(10 95)(11 96)(12 91)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 39)(26 40)(27 41)(28 42)(29 37)(30 38)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)
(1 56 38 44)(2 57 39 45)(3 58 40 46)(4 59 41 47)(5 60 42 48)(6 55 37 43)(7 74 21 86)(8 75 22 87)(9 76 23 88)(10 77 24 89)(11 78 19 90)(12 73 20 85)(13 72 96 84)(14 67 91 79)(15 68 92 80)(16 69 93 81)(17 70 94 82)(18 71 95 83)(25 63 33 51)(26 64 34 52)(27 65 35 53)(28 66 36 54)(29 61 31 49)(30 62 32 50)
(1 41)(2 42)(3 37)(4 38)(5 39)(6 40)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)(43 64)(44 65)(45 66)(46 61)(47 62)(48 63)(49 58)(50 59)(51 60)(52 55)(53 56)(54 57)(67 76)(68 77)(69 78)(70 73)(71 74)(72 75)(79 88)(80 89)(81 90)(82 85)(83 86)(84 87)(91 94)(92 95)(93 96)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,83)(2,84)(3,79)(4,80)(5,81)(6,82)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,51)(14,52)(15,53)(16,54)(17,49)(18,50)(19,57)(20,58)(21,59)(22,60)(23,55)(24,56)(25,90)(26,85)(27,86)(28,87)(29,88)(30,89)(31,76)(32,77)(33,78)(34,73)(35,74)(36,75)(37,70)(38,71)(39,72)(40,67)(41,68)(42,69)(61,94)(62,95)(63,96)(64,91)(65,92)(66,93), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84), (1,56,38,44)(2,57,39,45)(3,58,40,46)(4,59,41,47)(5,60,42,48)(6,55,37,43)(7,74,21,86)(8,75,22,87)(9,76,23,88)(10,77,24,89)(11,78,19,90)(12,73,20,85)(13,72,96,84)(14,67,91,79)(15,68,92,80)(16,69,93,81)(17,70,94,82)(18,71,95,83)(25,63,33,51)(26,64,34,52)(27,65,35,53)(28,66,36,54)(29,61,31,49)(30,62,32,50), (1,41)(2,42)(3,37)(4,38)(5,39)(6,40)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(43,64)(44,65)(45,66)(46,61)(47,62)(48,63)(49,58)(50,59)(51,60)(52,55)(53,56)(54,57)(67,76)(68,77)(69,78)(70,73)(71,74)(72,75)(79,88)(80,89)(81,90)(82,85)(83,86)(84,87)(91,94)(92,95)(93,96)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,83)(2,84)(3,79)(4,80)(5,81)(6,82)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,51)(14,52)(15,53)(16,54)(17,49)(18,50)(19,57)(20,58)(21,59)(22,60)(23,55)(24,56)(25,90)(26,85)(27,86)(28,87)(29,88)(30,89)(31,76)(32,77)(33,78)(34,73)(35,74)(36,75)(37,70)(38,71)(39,72)(40,67)(41,68)(42,69)(61,94)(62,95)(63,96)(64,91)(65,92)(66,93), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84), (1,56,38,44)(2,57,39,45)(3,58,40,46)(4,59,41,47)(5,60,42,48)(6,55,37,43)(7,74,21,86)(8,75,22,87)(9,76,23,88)(10,77,24,89)(11,78,19,90)(12,73,20,85)(13,72,96,84)(14,67,91,79)(15,68,92,80)(16,69,93,81)(17,70,94,82)(18,71,95,83)(25,63,33,51)(26,64,34,52)(27,65,35,53)(28,66,36,54)(29,61,31,49)(30,62,32,50), (1,41)(2,42)(3,37)(4,38)(5,39)(6,40)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(43,64)(44,65)(45,66)(46,61)(47,62)(48,63)(49,58)(50,59)(51,60)(52,55)(53,56)(54,57)(67,76)(68,77)(69,78)(70,73)(71,74)(72,75)(79,88)(80,89)(81,90)(82,85)(83,86)(84,87)(91,94)(92,95)(93,96) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,83),(2,84),(3,79),(4,80),(5,81),(6,82),(7,47),(8,48),(9,43),(10,44),(11,45),(12,46),(13,51),(14,52),(15,53),(16,54),(17,49),(18,50),(19,57),(20,58),(21,59),(22,60),(23,55),(24,56),(25,90),(26,85),(27,86),(28,87),(29,88),(30,89),(31,76),(32,77),(33,78),(34,73),(35,74),(36,75),(37,70),(38,71),(39,72),(40,67),(41,68),(42,69),(61,94),(62,95),(63,96),(64,91),(65,92),(66,93)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,31),(7,92),(8,93),(9,94),(10,95),(11,96),(12,91),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,39),(26,40),(27,41),(28,42),(29,37),(30,38),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84)], [(1,56,38,44),(2,57,39,45),(3,58,40,46),(4,59,41,47),(5,60,42,48),(6,55,37,43),(7,74,21,86),(8,75,22,87),(9,76,23,88),(10,77,24,89),(11,78,19,90),(12,73,20,85),(13,72,96,84),(14,67,91,79),(15,68,92,80),(16,69,93,81),(17,70,94,82),(18,71,95,83),(25,63,33,51),(26,64,34,52),(27,65,35,53),(28,66,36,54),(29,61,31,49),(30,62,32,50)], [(1,41),(2,42),(3,37),(4,38),(5,39),(6,40),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35),(43,64),(44,65),(45,66),(46,61),(47,62),(48,63),(49,58),(50,59),(51,60),(52,55),(53,56),(54,57),(67,76),(68,77),(69,78),(70,73),(71,74),(72,75),(79,88),(80,89),(81,90),(82,85),(83,86),(84,87),(91,94),(92,95),(93,96)]])
84 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3A | 3B | 4A | ··· | 4H | 4I | ··· | 4N | 6A | ··· | 6N | 6O | ··· | 6V | 6W | 6X | 6Y | 6Z | 12A | ··· | 12P | 12Q | ··· | 12AB |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | C4○D4 | C3×D4 | C3×C4○D4 |
kernel | C6×C22.D4 | C6×C22⋊C4 | C6×C4⋊C4 | C3×C22.D4 | C23×C12 | D4×C2×C6 | C2×C22.D4 | C2×C22⋊C4 | C2×C4⋊C4 | C22.D4 | C23×C4 | C22×D4 | C22×C6 | C2×C6 | C23 | C22 |
# reps | 1 | 3 | 2 | 8 | 1 | 1 | 2 | 6 | 4 | 16 | 2 | 2 | 4 | 8 | 8 | 16 |
Matrix representation of C6×C22.D4 ►in GL5(𝔽13)
10 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 8 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 1 | 2 | 0 | 0 |
0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,5,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,1,12,0,0,0,2,12,0,0,0,0,0,0,12,0,0,0,12,0],[1,0,0,0,0,0,12,1,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1] >;
C6×C22.D4 in GAP, Magma, Sage, TeX
C_6\times C_2^2.D_4
% in TeX
G:=Group("C6xC2^2.D4");
// GroupNames label
G:=SmallGroup(192,1413);
// by ID
G=gap.SmallGroup(192,1413);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,268]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations